Predicting Imprecise Failure Rates from Similar Components: A Case Study Using Neural Networks and Gaussian Procedures
نویسندگان
چکیده
Reliability prediction methods for early design stages suffer from the lack of empirical failure data. However, expert knowledge and data from similar in-service components are information sources ready available. In this work, an expert elicitation procedure for failure rate prediction is presented. In contrast to direct elicitation procedures such as FMEA, relations to in-service components are elicited. Neural networks and Gaussian processes are used to capture relations such as ”similarity” and ”wear out” to predict failure rate bounds and prediction uncertainty of new components. Both approaches are evaluated on a test set with raw failure rats. Results indicate that the method is a promising alternative to direct elicitation procedures.
منابع مشابه
A Detailed Investigation of Particulate Dispersion from Kerman Cement Plant
The aim of this study was to investigate the particulate dispersion from Kerman Cement Plant. The upwind – downwind method was used to measure particle concentration and a cascade impactor was applied to determine particle size distribution. An Eulerian model, Gaussian plume model and an artificial neural network have been used to compute and predict concentration of PM10 from Ke...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملA committee machine approach for predicting permeability from well log data: a case study from a heterogeneous carbonate reservoir, Balal oil Field, Persian Gulf
Permeability prediction problem has been examined using several methods such as empirical formulas, regression analysis and intelligent systems especially neural networks and fuzzy logic. This study proposes an improved and novel model for predicting permeability from conventional well log data. The methodology is integration of empirical formulas, multiple regression and neuro-fuzzy in a commi...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملEstimation of Daily Evaporation Using of Artificial Neural Networks (Case Study; Borujerd Meteorological Station)
Evaporation is one of the most important components of hydrologic cycle.Accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. In order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. Using direct methods require installing meteorological stations andinstruments ...
متن کامل